Effects of phosphate on uranium(VI) adsorption to goethite-coated sand.
نویسندگان
چکیده
U(VI)-phosphate interactions are important in governing the subsurface mobility of U(VI) in both natural and contaminated environments. We studied U(VI) adsorption on goethite-coated sand (to mimic natural Fe-coated subsurface materials) as a function of pH in systems closed to the atmosphere, in both the presence and the absence of phosphate. Our results indicate that phosphate strongly affects U(VI) adsorption. The effect of phosphate on U(VI) adsorption was dependent on solution pH. At low pH, the adsorption of U(VI) increased in the presence of phosphate, and higher phosphate concentration caused a larger extent of increase in U(VI) adsorption. Phosphate was strongly bound by the goethite surface in the low pH range, and the increased adsorption of U(VI) at low pH was attributed to the formation of ternary surface complexes involving both U(VI) and phosphate. In the high pH range, the adsorption of U(VI) decreased in the presence of phosphate at low total Fe concentration, and higher phosphate concentration caused a larger extent of decrease in U(VI) adsorption. This decrease in U(VI) adsorption was attributed to the formation of soluble uranium-phosphate complexes. A surface complexation model (SCM) was proposed to describe the effect of phosphate on U(VI) adsorption to goethite. This proposed model was based on previous models that predict U(VI) adsorption to iron oxides in the absence of phosphate and previous models developed to predict phosphate adsorption on goethite. A postulated ternary surface complex of the form of (>FePO4UO2) was included in our model to account for the interactions between U(VI) and phosphate. The model we established can successfully predict U(VI) adsorption in the presence of phosphate under a range of conditions (i.e., pH, total phosphate concentration, and total Fe concentration).
منابع مشابه
Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications.
U(VI) adsorption onto goethite-coated sand was studied in batch experiments ata solid-to-solution ratio (SSR) ranging from 33.3 to 333 g/L. Batch kinetic experiments revealed that the presence of 10(-4) M phosphate increased both the initial rate and ultimate extent of U(VI) adsorption compared with phosphate-free systems. Our experimental U(VI) adsorption isotherms were independent of SSR in p...
متن کاملAdsorption–desorption of heavy metal ions
Adsorption and desorption studies on different types of adsorbents, including natural materials such as teak tree bark powder, rice husk, natural bentonite, different algae like Ecklonia maxima, Escherichia coli, Ascophyllum nodasum, Rhizopus nigricans, Cladophora fascicularis, goethite and soils of three nuclear power plant and artificial materials such as Fe oxide-coated sand, goethite pretre...
متن کاملUranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals.
Uranium groundwater contamination due to U mining and processing affects numerous sites globally. Bioreduction of soluble, mobile U(VI) to U(IV)-bearing solids is potentially a very effective remediation strategy. Uranium isotopes (238U/235U) have been utilized to track the progress of microbial reduction, with laboratory and field studies finding a ∼1‰ isotopic fractionation, with the U(IV) pr...
متن کاملInfluence of sediment bioreduction and reoxidation on uranium sorption.
The influence of sediment bioreduction and reoxidation on U(VI) sorption was studied using Fe(II) oxide-containing saprolite from the U.S. Department of Energy (DOE) Oak Ridge site. Bioreduced sediments were generated by anoxic incubation with a metal-reducing bacterium, Shewanella putrefaciens strain CN32, supplied with lactate as an electron donor. The reduced sediments were subsequently reox...
متن کاملEffect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.
The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 38 22 شماره
صفحات -
تاریخ انتشار 2004